•	•	•	•	•	• •	•	•		•	•	•	•		•			•		•	•	•	•	•	•	•	•	•					•		•	•	•							•	6	
				-							-		-	-																						-									
																																											17	1	
				•	• •																											•										•			
•	•	•	•	•	• •	•	•	•	•	•		•		•		•	•		•	•	•	•	•	•	•		•	•	•	•		•		•	•	•			•			•	•	•	•
											-		-	_																		-					-								
																																											1		
		•		•	• •		•		•										•	•	•	•	•				•				•	•			•							D () •	
•					• •																		•									•										•	•	•	
				•	•																																						6	5 0	
•		•	•	•			•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•			•	•	•	•			•		•			•		•	• •	, ,	
				•	• •														۲	۲		۲	۲				۲					•											•) (
			•	•	•						•		•	•																		•			•								6	6	
			<u> </u>	<u> </u>								<u>.</u>	<u> </u>																																
•	•	•					•		•	•						•	•	•	•	•	•	•	•		•	•	•		•		•				•							P 7	7	/ 7	
				•	• •																	۲										•													
•	•	•	•	•	• •	•	•	•	•	•	•	•		•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•						•	•	6	•
				-						-	-		-	-																	-					-									
•		•		•	• •	•	•		•	•						•				•	•	•	•		•	•					•	•		•	•		•					•) •	
		•																														•						•					5 (
																																-											5 6		

						•	•	٠	٠	•											•									•	•	•				•	۲	•	٠	•			•				•
٠		•	•			•	•	٠	٠	•			•				•		•							٠						•				•	۲		٠					• 1			
٠		•	•	•		•	٠	٠	۲	٠	٠		•	•	•	•	•		•		•		•	•		٠	•	٠	•	۲		•		•		•	۰	•	٠	•			•	•	Þ		
•	•	•	•	• •		•	•	•	٠	٠	٠	•	•	•		•	•	•	•			•	•	•		•	•	٠	•	٠	٠	•		•	•	•	•	٠	٠	•			•	• 1	•		
•	•	•	•	•		•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		• •		•	•	•	•	•			•	•	•		
•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•			•	•	•		
•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•			•	•	•	•	•	•	•				•	•	•	•	•			•	• •	•		
	•	•		•						•		•	•	•	•		•		•	•	•	•	•								•	•	•	•		•	•						•				
	•	•								•			•	•			•		•			•																									
																																											-				
		-											-																																		
		•														ŏ								ŏ					ŏ														ŏ				
							•	•	•	•	•				•					•	•				•	•	•	•			•	•		•		•	•	•	•	•	•	•	•	•		•	•

Our goal is to enable the analysis of **anything**, **by anyone**, **anywhere**.

Nanopore DNA and direct RNA sequencing has been performed on board the International Space Station. Image credit: NASA's Johnson Space Center.

Discover the benefits of nanopore technology

Any read length, from short to ultra-long (longest >4 Mb^{*})

- Ultimate flexibility optimise for your application
- Easier genome assembly
- Resolve structural variants, repeats, and phasing
- Characterise and quantify full-length transcripts

Scalable — portable to ultra-high throughput

- One technology across all devices — scale to your needs
- Sequence at sample source with Flongle[™] and MinION[™]
- Compact, high-output benchtop sequencing with GridION[™] and PromethION[™]

Direct sequencing

- Sequence native DNA or RNA, not a copy
- Eliminate amplification bias
- · Identify base modifications

Streamlined library preparation

- Rapid 10-minute (DNA) library prep
- Automatable kit formats
- High DNA and RNA yields from low input amounts
- Maximise throughput with barcoding

Real-time analysis

- Immediate access to actionable results
- Enrich regions of interest without additional sample prep using adaptive sampling
- Early sample insights and QC
- Enough data? Stop, wash, store, or run another sample

On-demand sequencing

- Sequence what you need when you need it
- No sample batching required
- Flexible throughput with modular GridION and PromethION

One technology for all your biology

Structural variants

Accurately call SVs (e.g. 23,000 SVs detected per human genome, up to 5x greater than sequencing by synthesis [SBS])¹

Methylation

Identify base modifications (e.g. 5mC, 5hmC, 6mA, m6A) alongside nucleotide sequence — no additional sample prep required

SNPs & phasing

Detect SNPs in regions inaccessible to SBS sequencing and generate chromosome-scale phaseblocks

Splice variation

Fully characterise alternative splicing using full-length cDNA or direct RNA sequencing reads

Indels

Detect the same variants as existing technology while exploring new biology

Gene expression

Accurately characterise and quantify full-length transcripts at the isoform level using long sequencing reads

Assembly

Generate highly contiguous, chromosome-scale scaffolds

Single cell

Analyse full-length transcripts at single-cell resolution

View the latest accuracy data for all variant types at nanoporetech.com/accuracy

A complete and streamlined workflow - real-time an

swers to your biological questions

ANALYSE

EPI2ME™

- Pre-configured workflows
- No bioinformatics skills needed
- Run locally or in the cloud
- Choose between real-time or post-run analysis

BIOINFORMATICIAN

Command-line tools

- Access the latest algorithms
- Open-source tools developed by Oxford Nanopore or Nanopore Community
- Run pre-configured EPI2ME workflows

nanoporetech.com/analyse

Library preparation kits

Select the library preparation kit that matches your specific experimental needs — your choice of read length (short to ultra-long), turnaround time, input amount, sample multiplexing, modification detection, and output requirements. Find out more and view our complete library prep portfolio at **nanoporetech.com/prepare**.

Amplified DNA	Targeted	R	NA
Rapid PCR Barcoding Kit	16S Barcoding Kit	cDNA-PCR Sequencing Kit	Direct RNA Sequencing Kit
15 min + PCR	25 min + PCR	225 min + PCR	135 min
1–5 ng gDNA	10 ng gDNA	10 ng poly-A ⁺ RNA or 500 ng total RNA	300 ng poly-A⁺ RNA or 1 µg total RNA
\bigcirc	\bigcirc	\bigcirc	In development
~2 kb	Full-length 16S gene (~1.5 kb)	Enriched for full-length cDNA	Equal to RNA length
\bigcirc	\bigcirc	\bigcirc	
			\bigcirc
Low input optimised	Oxford Nanopore devices also offer adaptive sampling, a unique on-device target enrichment methodology that requires no upfront library enrichment (see page 16)	Detect modified b the Direct RNA	ases for free with Sequencing Kit

Get more from your flow cells

Barcoding

Barcoding kits allow users to multiplex samples to generate maximum data from a single flow cell, to separate the reads from sequential library loadings, and to lower the cost per sample.

- Native Barcoding Kits and Rapid Barcoding Kits for PCR-free approach
- Rapid PCR Barcoding Kit for low input amounts

Flow cell reuse

The wash kit allows reuse of flow cells after short sequencing runs, meaning multiple libraries can be run sequentially on the same flow cell.

Sample recovery

Nanopore flow cells allow libraries to be recovered after sequencing, enabling rare or precious samples to be resequenced for maximum data output.

Easily automate your workflow

Automated library preparation

Automation of library preparation improves the overall consistency of results, supporting robust and standardised workflows, which enables increased sample throughput for medium- and large-scale projects, such as large cohort studies. Our streamlined library preparation kits are easy to automate, and protocols are available for a range of liquid handlers.

Open platform development

Alongside in-house development of automation scripts, we work with automation platform vendors and customers to design, develop, and test scripts that can be used as part of your workflow. View our rapidly expanding range of automation scripts at **nanoporetech.com/automation**.

Oxford Nanopore qualified

Developed and verified in house at Oxford Nanopore

Benchmarked against manual library preparation performance to ensure highly robust sequencing results

Vendor developed

Designed, developed, and tested by automation vendors

Results shared with Oxford Nanopore to verify robust and acceptable performance — against both manual and automated libraries

Customer developed

Customer developed to suit specific needs

Scripts with variations from protocols published by Oxford Nanopore

Customers post results, enabling public assessment of performance

Get expert advice and support from our dedicated Automation Solutions Team: **register.nanoporetech.com/automation**

Nanopore sequencing — how it works

Nanopore sequencing is a unique, scalable technology that enables direct, real-time analysis of DNA or RNA fragments of any length. It works by monitoring changes to an electrical current as nucleic acids are passed through a protein nanopore. The resulting signal is decoded to provide the specific DNA or RNA sequence.

The nanopore processes the length of **DNA** or **RNA** presented to it. The user can control fragment length through the library preparation protocol utilised, allowing the generation of any desired read length — from short to ultra-long (e.g. >4 Mb DNA¹ and >20 kb RNA²).

An **enzyme motor** controls the translocation of the DNA or RNA strand through the nanopore. Once the DNA or RNA has passed through, the motor protein detaches and the nanopore is ready to accept the next fragment.

Nanopore reader

DNA or RNA fragments pass through a nano-scale hole. The fluctuations in current during translocation are used to determine the DNA or RNA sequence (see page 30).

An electrically resistant **membrane** means all current must pass through the nanopore, ensuring a clean signal.

1. Internal data generated using the Ultra-Long DNA Sequencing Kit. 2. Viehweger, A. et al. Genome Res. 29:9 (2019).

Library preparation

Library preparation results in the addition of a sequencing adapter and motor protein at each end of the fragment.

Translocation

Both DNA strands carry the motor protein allowing them both to translocate the nanopore.

First strand...

First strand...

(Exit)

Next molecule (or second strand)...

Targeted sequencing reinvented

Adaptive sampling

Adaptive sampling is a unique, on-device approach to targeted sequencing, which requires no upfront library enrichment steps. Using real-time basecalling, DNA fragments can be accepted or rejected for further sequencing based on their initial sequence composition. Furthermore, adaptive sampling can be implemented in advance of, or even during, a run to increase coverage of specific targets.

- Target multiple regions of interest

 without lengthy lab-based
 enrichment steps
- No limit on read length expand targeted assays to include SNVs, SVs, and phasing
- Enrich long, native DNA molecules
 retain base modifications
- Adjust enrichment in real time enhance coverage of key regions or low-abundance species

Region of interest

Flongle

Adapting MinION and GridION devices for smaller rapid tests and analyses

......

Flongle is an adapter for MinION or GridION devices that enables direct, real-time DNA or RNA sequencing on smaller, single-use flow cells. Providing immediate access to sequence data, Flongle is designed to be the most rapid, accessible, and cost-efficient sequencing system for smaller or more frequently performed tests and experiments.

Reusable adapter that allows docking of smaller flow cell

Same MinION device

Specification

Weight 20 g **Size** W 105 mm | H 23 mm | D 8 mm **Compatible with** MinION and GridION devices

MinION Mk1B

Your personal, portable DNA and RNA sequencer

Get complete control and creativity over when, where, and how often you sequence. MinION Mk1B provides the power of nanopore sequencing in an accessible, fully portable device. Weighing only 100 g and running off a laptop, MinION Mk1B generates tens of gigabases of real-time data in the field or lab.

Sensor array with multiple nanopores for scaled-up sequencing

Sensor chip works with custom ASIC for control and data acquisition

Specification

Weight 87 g (103 g with flow cell) **Size** W 105 mm | H 23 mm | D 33 mm Compatible with MinION and Flongle Flow Cells

999

GridION

Self-contained, easily deployable DNA/RNA benchtop nanopore sequencer

A flexible, self-contained, benchtop nanopore sequencer, running up to five MinION or Flongle Flow Cells (or combinations of each) that can respond to the needs of multiple users on demand, across varied applications. Integrated, high-performance data processing alleviates the need for complex IT infrastructure.

Consumable flow cell where the biology and electronics come together for nanopore sequencing

Onboard data analysis offering real-time basecalling and adaptive sampling

Service provider certification is available for the GridION

Sample added to flow cell here

Five individual MinION or Flongle Flow Cells can be operated individually or together, suitable for research labs and service providers

Specification

Weight 14.4 kg **Size** W 370 mm | H 220 mm | D 365 mm **Compatible with** MinION and Flongle Flow Cells

PromethION 2 Solo and PromethION 2 Integrated

Low-cost access to high-output PromethION sequencing

Offering the flexibility of two independent, high-output PromethION Flow Cells, the compact PromethION 2 devices deliver the benefits of high-coverage nanopore sequencing to users with lower sample processing requirements. Get fully integrated sequencing and analysis with PromethION 2 Integrated or expand your GridION/existing compute infrastructure with PromethION 2 Solo.

Two high-output flow cells can be operated individually or together for flexible, on-demand sequencing

Connect to GridION or existing compute infrastructure

e P2 P2 PromethiON 2 Solo

Service provider certification is available for PromethION devices

Specification

Weight 1.5 kg

Size W 110 mm | H 87 mm | D 152 mm Compatible with PromethION Flow Cells

High-resolution touchscreen display allowing complete device control Standalone, fully integrated device with powerful GPU for onboard data analysis P2 PromethION 2 Integrated

Specification

Weight 10.6 kg **Size** W 180 mm | H 22

W 180 mm | H 225 mm | D 430 mm

Compatible with PromethION Flow Cells

PromethION 24 and PromethION 48

Flexible DNA/RNA high-throughput nanopore sequencers

Offering the flexibility of 24 independently controllable, high-output flow cells and leveraging state-of-the-art algorithms and GPU technology, PromethION 24 (P24) provides single or multiple users with on-demand access to terabases of sequencing data. PromethION 48 (P48), our most powerful sequencing device, delivers twice the capacity and output of P24 — ideal for large- and production-scale sequencing projects.

24 (P24) or 48 (P48) flow cells can be operated individually or together for flexible, on-demand sequencing

Service provider certification is available for PromethION devices

Specification

Weight Sequencing Unit 28 kg Data Acquisition Unit 26 kg

Size

W 590 mm | H 190 mm | D 430 mm W 178 mm | H 440 mm | D 470 mm

Compatible with PromethION Flow Cells

ElysION

Your automated, sample-to-answer sequencing solution

ElysION[™] provides a hands-free, simplified genomic workflow that goes from sample to data analysis. This benchtop device integrates the entire sequencing workflow — sample extraction and library preparation to flow cell loading, sequencing, and data analysis — into one seamless solution to generate ultra-rich data with minimal hands-on time.

Integrated MinION Mk1D or PromethION 2 Solo, plus powerful compute with pre-installed basecalling and analysis software

High-resolution touchscreen display allowing complete device control and easy visualisation of results

Onboard data analysis with integrated EPI2ME software and verified end-to-end workflows

Data analysis and basecalling

Nanopore sequencing provides real-time data streaming, enabling basecalling and subsequent data analysis to be performed in parallel for immediate access to results.

As a DNA or RNA strand passes through the nanopore, the current is measured several thousand times per second. These current samples are known as raw data, which is subsequently processed using machine learning techniques into basecalled data — the sequence of DNA or RNA bases

The facility of nanopore technology to sequence native DNA and RNA without the requirement for amplification or reverse transcription, allows the retention and detection of base modifications (e.g. methylation) alongside nucleotide sequence

Nanopore data is provided in standard output file formats suitable for analysis using a range of downstream analysis tools, including Oxford Nanopore's best practice EPI2ME pipelines.

Basecalling and device control

MinKNOW[™], the device control and primary analysis software for all nanopore devices, provides easy experimental setup and real-time visualisation of sequencing performance.

MinKNOW enables complete control of sequencing parameters: start runs, set run parameters, and group experiments

=	<u>1. Positions 2.1</u>	Git 3. Run options	4. Basecalling 5	.Output 6.Start
•	Sample Type PCR-	Free Multiplex	ing No Control	<u>Reset Filters</u>
	SQK-LSK109	SQK-RBK004	SQK-RAD004	SQK-RNA002
~	SQK-PBK004	SQK-165024	SQK-CAS109	SQK-CS9109
	SQK-DCS109	SQK-LRK001	SQK-LSK109-XL	SQK-LSK110
۵	SQK-LSK110-XL	SQK-NBD110-24	SQK-NBD110-96	SQK-PCB109
	SQK-PCB110	SQK-PCS109	SQK-PCS110	SQK-PRC109
	SQK-PSK004	SQK-RBK110-96	SQK-RNA003	SQK-RPB004
*				
7	Sack to position selection			

Visualise sequencing progress and performance in real time. Quality check your run, and if there's a problem with the library, stop sequencing, wash the flow cell, and start again

AC OURNO

Read length histogram

Live output of basecalled reads for immediate analysis. Basecalling can also be performed after the sample run using a range of algorithms

Intuitive analysis with EPI2ME

The local or cloud-based EPI2ME data analysis platform provides easy access to a growing number of real-time and post-run data analysis workflows.

Data analysis workflows include:

- Human variation: SVs, SNVs, and methylation
- Somatic variation: tumour/normal sequence data
- Plasmid and amplicon assembly
- Metagenomic species identification
- Infectious diseases: SARS-CoV-2, smallpox, influenza, etc
- Single cell and transcriptomics

	EPI2ME
Location	Local, distributed, or in the cloud
Access	Intuitive graphical interface*
Configurability	Pre-configured
Reporting	Detailed output, shareable reports
Focus	Seamless real-time or post-run analysis
Operating systems	Windows, Mac, Linux
Bioinformatics expertise	

* All EPI2ME workflows can also be executed from the command line.

Insightful reports

Intuitive graphical interface

GridION .

Local or cloudbased analysis

DELL

Innovation in action

Oxford Nanopore Technologies is relentlessly committed to developing innovative, accessible solutions that enable scientific communities to fully explore and understand the biological world. Find out more at **nanoporetech.com**.

Innovation is at the heart of everything we do, and it generates highly differentiated products and drives continuous improvement to deliver value to our users

> Clive Brown Chief Technology, Innovation, and Product Officer

One technology. Any scale

$\bullet \bullet $		$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet $	
• • • • • • • • • • • • • • • • •		$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	• • • • • • • • • • • • • •	
 Oxford Nanopore Technologies 	 		• • • • • • • • • • • • • •	
• phone +44 (0)845 034 7900	 		• • • • • • • • • • • • • •	
• email support@nanoporetech.com			• • • • • • • • • • • • • •	
• in Oxford Nanopore Technologies				
• X @nanopore				•
				•

	• •				•	•	•	•	•) (•	•	•	•	•	•						•	•						•	•		•	•	•	•	•	•	•	•	•	•	•	•	•					•
	6										6			•	•		•															•	•	•	•	•	•											e				
					•	•	•	•	•		1		•	•	•	•	•	•	•					•	•	•						•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9				
	• •				•	•	•	•	•) (٠	۰	۲	•						۰	•										۲	۰	•	•	•	•	•	•	•	•	•	•					
	• •				•	•	•	•	•		6		b				۲	۲	•						۲	•										۲	۲	•	•	•		۲	•	•	•	•	•	•				
	•				•	•	•	•	•		6			•	•	•	•	•	•				•	•	•							•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G				•
														_																																						
	•				•	•	•	•						•	•	•	•	•	•				•	•	•	•						•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9				
								- 1-																												۲	۲	•	•	•	•	٠	•	•	•	•	•	•				
D	W	vw	.na	ano	opo	ore	ete	cn	1.C	on	n																										۲		•			•	•		•	•	•					
	Ovi	ord	Nar	iono	re Tr	echi	ากไก	nie	e ti	he V	Nhe	o li	cor	٦F	lveli	SN	FP	12M	F	Flor	nale	- G	irid	ION	N N	linl	ОN	Mi	nKN	NOV	Va	ind		•	•	•	•	•		•	•	•		•	•	•		•			•	
	Pro	metl	hIOI	N are	erec	qiste	ered	tra	den	nark	ks d	of O	xfo	rd I	Van	opc	re 1	[ecł	nno	logi	ies	plc	in	vari	iou	s co	ount	ries	5. A	ll ot	her	-																				
	bra	nds	and	nan	nes d	cont	aine	ed a	ıre †	the	pro	per	ty o	of tl	neir	res	pec	tive	ow	vnei	rs. I	Infc	orm	atic	on c	cont	tain	ed ł	nere	ein i	may			Ĭ.		-																
•	be	prote	ecte	d by	pat	ents	s or	pate	ent	s pe	nd	ing	of (Dxf	ord	Nar	nop	ore	Tec	chno	olo	gies	s pl	c. @	D 20)24	Oxt	ford	I Na	anop	oore																					
	Tec	hno	logi	es p	c. A	ll riç	ghts	res	erv	/ed.	Оx	for	d Na	anc	por	e Te	echi	nolc	ogie	es p	rod	luct	is a	re r	not	inte	end	ed f	or ι	use	for					•	•	•	•	•	•	•	•	•	•	•	•	- •				
D	hea BR	100 Ith	asse 9(F	ssm N) V	ent 11 C	or to)1Se	o dia 1020	agno)24	ose	, tre	at,	mit	ıga	te,	cure	e, oi	pre	ever	nt a	iny	dīse	eas	eo	rco	ond	itio	n.							•		•	•	•	•	•	•	•	•	•	•	•	•	•	•)		

• •